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Detailed theoretical and numerical results are presented for the eddy viscosity of three- 
dimensional forced spatially periodic incompressible flow. 

As shown by Dubrulle & Frisch (1991), the eddy viscosity, which is in general a 
fourth-order anisotropic tensor, is expressible in terms of the solution of auxiliary 
problems. These are, essentially, three-dimensional linearized Navier-Stokes equations 
which must be solved numerically. 

The dynamics of weak large-scale perturbations of wavevector k is determined by 
the eigenvalues - called here ‘eddy viscosities’ - of a two by two matrix, obtained by 
contracting the eddy viscosity tensor with two k-vectors and projecting onto the plane 
transverse to k to ensure incompressibility. As a consequence, eddy viscosities in three 
dimensions, but not in two, can become complex. It is shown that this is ruled out for 
flow with cubic symmetry, the eddy viscosities of which may, however, become 
negative. 

An instance is the equilateral ABC-flow (A = B = C = 1). When the wavevector k 
is in any of the three coordinate planes, at least one of the eddy viscosities becomes 
negative for R = 1 / v  > R, N 1.92. This leads to a large-scale instability occurring for 
a value of the Reynolds number about seven times smaller than instabilities having the 
same spatial periodicity as the basic flow. 

1. Introduction 
After Navier (1823) had shown that - at that time hypothetical - molecular motion 

leads to a viscous diffusion term in the equation for fluid motion, de Saint Venant 
(1851) observed that flow in wide channels possesses complex eddy motion which 
considerably enhances the ‘friction coefficient’ (as the viscosity was called at the time). 
Boussinesq (1870) proposed a formula for what is now called the eddy viscosity, 
namely 

vE = Au, h, 

where A is a dimensionless constant, u, is a typical speed and h is a typical scale (e.g. the 
radius of curvature for pipe flow). Only after the work of Taylor (1915) and Prandtl 
(1925) did such a ‘mixing length’ expression of the eddy viscosity become of 
widespread use in the modelling of turbulent flow. 

It was realized quite early that there is a strong analogy between, on the one hand, 
microscopic transport (the effect of molecular motion and collisions on scales much 
larger than the mean free path) and, on the other hand, turbulent transport (see Lamb 
1916). 

The systematic derivation of the hydrodynamical equations from kinetic theory uses 
singular perturbation techniques in which the small parameter is the Knudsen number 
(the mean free path h divided by the hydrodynamical scale lo). This goes back to the 
works of Hilbert, Chapman and Enskog (see e.g. Brush 1986, chapter 12). 
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Similarly, when considering macroscopic fluid motion on scales - lo, in order to 
derive a transport equation with an eddy viscosity, a necessary condition is that the 
transport should take place on hyperscales L 9 lo. This condition is, however, far from 
sufficient. Indeed, microscopic and macroscopic motion are of very different nature, 
the former being conservative while the latter are dissipative. Consequently, 
macroscopic motion will decay unless constantly regenerated. 

Here, we shall assume that the motion is regenerated by a driving force which is 
periodic or random in space and time, a simple instance of which is the Kolmogorov 
flow (Meshalkin & Sinai 1961 ; Nepomnyashchy 1976; Sivashinsky 1985; Bondarenko, 
Gak & Dolzhansky 1979). 

As is well-known, the form of the ordinary hydrodynamical equation is dictated to 
a large extent by the conservation laws and symmetries (invariance group) of 
microscopic motion. Similarly, the form of the hyperscale equations depends on the 
assumed symmetries of the force. Using a multiscale technique, Dubrulle & Frisch 
(1991, referred to hereinafter as DF) showed that if the force is parity-invariant 
(possesses a centre of symmetry), the hyperscale behaviour is formally diffusive, that 
is, governed by linear partial differential equations with first-order time derivatives and 
second-order space derivatives. In the absence of parity-invariance, first-order space 
derivatives, leading to the so-called AKA-effect, may also be present (Frisch, She & 
Sulem 1987; Sulem et al. 1989). One way in which eddy viscosities may differ 
dramatically from molecular viscosities is that they need not be positive. Vergassola 
(1993) and Gama, Vergassola & Frisch (1994) have investigated the case of two- 
dimensional flow and found that it frequently has negative eddy viscosity. 

For three-dimensional flow, which is our main concern here, eddy viscosities have 
been calculated so far only in special instances: flow &correlated in time (Gama et al. 
1994, Appendix D) and low-Reynolds number flow (DF). The difficulty is that, in 
general, numerical calculation of the eddy viscosity tensor is unescapable. This feature 
is present in most multiscale problems, e.g. the heat equation with periodic coefficients 
in more than one dimension (Bensoussan, Lions & Papanicolaou 1978). 

The paper is organized as follows. In $2.1 we briefly recall the multiscale machinery 
for determining eddy viscosities. This section may be skipped by readers already 
familiar with DF. In $2.2 we give a new definition of the eddy viscosity as an eigenvalue 
of a suitable operator. Section 3 is devoted to the calculation of eddy viscosities in three 
dimensions, mostly by numerical methods ($3.1). Section 4 is devoted to applications: 
complex eddy viscosities ($4.1, already briefly reported in Wirth 1994) and negative 
eddy viscosity instability for the ABC-flow (84.2). Section 4.2 also includes some 
remarks about the thermodynamics of negative (eddy) viscosity. This issue of isotropy 
for the eddy viscosity is discussed in $5. 

2. Theory of three-dimensional eddy viscosities 
2.1. Multiscale technique for eddy v’iscosities 

Our purpose is to show that a small-scale flow, produced by a prescribed parity- 
invariant driving force, modifies the diffusion of momentum at large scales : the 
molecular viscosity is changed into an eddy viscosity, which is usually a tensor. 

The starting point is the three-dimensional Navier-Stokes equation for flow subject 
to space- and time-periodic forcing. In the notation of DF it reads: 
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The solution u and the forcefare all supposed to be 2n-periodic in t ,  xl, x2, x3 and to 
have vanishing space-time averages. The formalism can, in principle, be extended to 
quasi-periodic or random space-time dependence. This requires significant changes in 
the numerical methods and will not be discussed here. 

The basic flow ( p ,  u) is now subject to a weak perturbation: 

p + p + y P ,  u + u + 7 w ,  (3) 

where 7 denotes a small parameter. By omitting the 0(v2)-terms we get the following 
linearized Navier-Stokes equation, which is here linearized around the basic flow 
( p , u ) :  

(4) 

This is a partial differential equation with periodic coefficients. The large-scale, long- 
time behaviour of the perturbation is derived using multiscale analysis. The solution 
(P, W) is assumed to depend both on a fast variable x, corresponding to the basic flow 
and on a slow variable X = ex, where 6 (the scale ratio) tends to zero. (Since only the 
linear large-scale dynamics is needed for the calculation of the eddy viscosity, the limit 
7 + 0 may be taken before the limit of large-scale separation e-t  0.) The nonlinear 
large-scale dynamics has been considered by Gama et al. (1994) in the two-dimensional 
case and is beyond the scope of the present paper. 

The question of how the time variable should be rescaled depends crucially on the 
symmetries of the problem. In general, the linear large-scale dynamics is first order in 
time and first order in space (Frisch et al. 1987; Sulem et al. 1989). The corresponding 
physical effect is known as anisotropic kinetic alpha (AKA)-effect. To obtain second 
order in space large-scale dynamics, it is sufficient to assume parity-invariance, i.e. the 
presence of a centre of symmetry. An important class of flows not having parity- 
invariance, but still with no AKA effect, are the ABC flows, discussed in $4.2. 

Henceforth, we shall assume the absence of an AKA effect. The appropriate 
rescaling to obtain the ‘slow’ time variable is then T = 2 t .  

The next step is to use the decomposition rule for time- and space-derivatives: 

I a .  w =  0, 
a, w,+a,(u< y + u j  w,) = -a<P+VaZw,. 

a, +a, + € z a T ,  a + a + €v, ( 5 )  
where V denotes partial derivatives with respect to the slow variable X. This reduces 
the linearized Navier-Stokes problem (4) to a standard singular perturbation problem 
which can be solved by repeated use of solvability conditions (Fredholm alternatives). 
The solution is obtained by expanding the large-scale perturbation ( P ,  W )  in powers 
of 8, 

To write the equations in a compact form, following DF, it is convenient to introduce 
an operator notation. The linearized Navier-Stokes equation (4) is rewritten 
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Here, the bullet symbol indicates that uk and ui act multiplicatively. When the 
linearized Navier-Stokes operator d is restricted to functions which have the same 
space-time periodicity as the force, it will be denoted by A (and similarly from its 
matrix blocks such as Apw).  

Upon use of the decomposition, (4) becomes : 

( A + ~ B + E . ~ ) (  L) = 0, 

where B and C are given by 

One then substitutes (6) into (10) and requires that the result vanishes to all orders in 
6 .  The three leading-order equations are : 

The assumption of parity-invariance of the basic flow ensures the solvability of (16) 
(see DF). The solvability condition of (17) gives the desired large-scale equation, 

aT(wp) = V i i l m ~ j ~ L ( ~ ~ ) ) - ~ i ( ~ ( l ) ) .  (19) 

V i j l m  = V S j ,  Sim + ((Bj2-1Byz-2-54))wi wm). 

Where (.) denotes the space-time average over the periodicities. Thanks to the 
operator notation, D F  have written the 'eddy viscosity tensor' vijlm in compact form : 

(20) 
Since in three dimensions the four indices take three values, there may be up to 81 
different components of the eddy viscosity tensor. This number may, however, be 
reduced to 54 by symmetrization of the eddy viscosity tensor in the ( j ,  l )  indices, since 
the latter are contracted with two V. 

An interesting feature, not stressed in DF, is that the operators appearing in (20) are 
not acting in the space of divergenceless velocity fields. The reason is that, after use of 
the decomposition (9, the divergenceless condition will mix different orders of Wn). 
For example, the divergenceless condition to order 6 is 

v .  ~ ( 0 )  + a .  ~ ( 1 )  = 0. 

This requires some care in the numerical calculation of the eddy viscosities (83.1). 
(21) 
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2.2. The eddy viscosity as an eigenvalue 
We now show that the concept of eddy viscosity as a number (real or complex) emerges 
as an eigenvalue problem when studying the system (18)-(19) We may eliminate the 
pressure ( P c l ) )  using the incompressibility condition and the projector 

Pi, = sij - vi v, v-2. 
We thereby obtain from (19) 

This pseudodifferential equation has plane wave solutions of the form 

( Wio)(X, T ) )  = W;ig exp (ik. X) exp (- vE k2T) .  (24) 
Substituting (24) into (23) gives us an eigenvalue problem 

(25) 
v k2 WFg = vrjzrn ( St,-+) k . k  k, kj  Wzg, 

E 

which may be written as 
v Weig = H(ko) 

E 

Here, ko = k/lkl, and H(ko) is the matrix 

Hi,(ko) = ~ ~ ~ ~ ~ ( 8 ~ ~  - kf k:) kj" k;. (27) 
The eddy viscosity vE appears thus as an eigenvalue of the matrix H(ko).  Observe that 
the eigenvalue zero is always present with the corresponding eigenvector parallel to ko. 
This eigenvalue/eigenvector is, however, not really acceptable since the vector Weig 
should be perpendicular to k (by incompressibility). Actually, the matrix H acts non- 
trivially only in the (d-  1)-dimensional subspace perpendicular to k.  Its restriction to 
this subspace will be denoted Hl. 

It follows that, for a given wave-vector, the eddy viscosities vE are the eigenvalues 
of the (d-  1) x (d-  1) real matrix HL. The entries of this matrix are real because all the 
v , , , ~  are real. 

A consequence is that in two dimensions, the eddy viscosity is always real. This is 
not so in three dimensions. To examine the question more closely, let us specialize 
the k-vector to the X3 direction. As long as the basic flow has not been chosen, this 
is no major restriction. From (25) we obtain the following equation for Weig = 

(28) 

( W y ,  w p ,  0) 
Weig We@ We@ 

' E  ( wiig) = H L  (waig) (z:::: :::::) (waig) * 

Thus, the eddy viscosity eigenvalues are the roots of the quadratic equation 

'i - ('133, + '2332) ' E  + '1331 '2332 - '1332 '2331 = O' (29) 
If the discriminant 

A ('1331 - '233212 +4'1332 '2331 2 O, 
the eigenvalues are real. In the opposite case ( A  < 0), the eigenvalues are complex (non- 
real). In $4.1 we shall show that there indeed exist flows such that A < 0. 

2.3. The case of cubic symmetry 
It is well known that in three dimensions there exist no crystallographic group ensuring 
the isotropy of fourth-order tensors (Landau & Lifshitz 1970). With 2n-periodicity in 
x,, x2 and x3, the best we can have is cubic symmetry, i.e. invariance under coordinate 
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permutations and inversion of coordinates. Note that cubic symmetry singles out a 
particular frame of reference in which it is convenient to write the eddy viscosity tensor 
in frame-dependent notation. 

The full cubic symmetry group can be generated by the following elements: 

G, : (x,, x,, x,) H (x1, x,, - x,), 

G, : (x,, x,, x3) I+ ( ~ 3 ,  x,, -xJ9 
(3 1) 
(32) 

P:(x1,x2,x3)H(-x1, -x2, -x3)* (33) 
Note that P-invariance is just parity-invariance. 

It is easy to find examples of incompressible flows with weak cubic symmetry 
(invariance under rotations of around any of the coordinate axes or translates 
thereof) which are not parity-invariant. An example is the equilateral ABC-flow 
discussed in $4.2. An example of incompressible flow invariant under the full cubic 
symmetry is 

u1 = sin 2x1 cos xz cos x, - sin x, cos 2x, cos x, - sin x, cos x, cos 2x3, (34) 
u, = sin 2x, cos x, cos x, - sin x, cos 2x, cos x1 - sin x, cos x, cos 2x,, (35) 
u3 = sin 2x3 cos x1 cos x, - sin x, cos 2x, cos x, - sin x, cos x, cos 2x,. (36) 

Flow which is not parity-invariant will usually give rise to an AKA-effect (although 
there are exceptions to this, such as Beltrami flows). 

As is shown in the Appendix, the most general form of the eddy viscosity tensor with 
weak cubic symmetry may be taken as 

where Sij and aijGm are Kronecker deltas (all indices must be equal for non-vanishing). 
Note that (37) already holds with just GJnvariance ( i  = 1,2). Observe that when a = b 
the eddy viscosity becomes isotropic. Obviously, when the molecular viscosity is large 
(low Reynolds number), we have to leading order a z b z v. 

The expressions of the eddy viscosities (as eigenvalues) for the case of weak cubic 
symmetry are given in the Appendix. 

VijLm aa i j lm  + b(Jim Ji j lm),  (37) 

3. Calculations of eddy viscosities in three dimensions 
Equation (20) gives the eddy viscosity in compact form, but not in explicit form, 

since it involves the inversion of the linearized Navier-Stokes operator 2, an inversion 
which can be performed explicitly only in special cases. 

The simplest case where everything can be calculated analytically is for layered flow, 
i.e. when the basic flow depends on a single coordinate, say x, (see DF). Such flow, even 
if it has non-vanishing x2- and x,-components, is not genuinely three-dimensional and 
will not concern us. 

Low-Reynolds-number flow, without any restriction on the dimensionality, is 
amenable to perturbative calculation of the eddy viscosity tensor, as discussed in DF 
($111). Their result for the first two terms of the eddy viscosity in an expansion in 
powers of v-l will be used subsequently. It reads: 

V i j l m  = V a i m ~ j , + v - ~ { - 2 ( ~ j ~ - 1 a - ~ a i a m u , ) - 2 ( u i ~ - 1 a - ~ a ~ a m u , )  
+ (Uj 2 -1uJ a,, + ( U i  2 -'ul) ajm 
+ 2 ( u ~ ~ - ~ a , a m u i ) + 2 ( u i ~ - ~ a , a m u j ) > + o ( v - ~ ) .  (38) 

7 = vt. (39) 

Here, Y? = a, - 3' is the heat operator and the time 7 is related to the fast time by 
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Another instance where the eddy viscosity may be calculated analytically is when the 
basic flow is random and &correlated in time (Gama et al. 1994, Appendix D). 
However, in general the eddy viscosity tensor can be determined only by numerical 
calculation, as discussed in the next section. 

3.1. Numerical calculations of the eddy viscosity tensor in three dimensions 
Our goal is to compute, for a given basic flow u and a given molecular viscosity v, all 
the components of the eddy viscosity tensor given by (20). In what follows we shall 
limit ourselves to time-independent basic flow. The extension to time-dependence is 
quite straightforward (see Gama et al. 1994 for the two-dimensional case) but can be 
very taxing in computer resources. 

The main problem which must be handled numerically is the calculation of the 
inverse of the linearized Navier-Stokes operator A”-’, restricted to functions of zero 
mean-value. This inverse is well-defined, for large enough molecular viscosities, as long 
as no eigenvalues of A” have crossed the imaginary axis. Otherwise, there will be small- 
scale instabilities growing on a fast timescale and it becomes uninteresting to study 
large-scale dynamics. 

The space of functions on which act operators such as A ,  A”-’ and B are quadruplets 
of a scalar (the pressure) and of a 3-vector. The latter, as already noted in $2.1, is not 
restricted to zero divergence. 

If a discretization involving N grid points in each direction is used, the discretized 
quadruplets have thus 4N3 degrees of freedom and the operator A”-’ will be a matrix 
with 16N6 entries. Since N has to be typically 32 or 64 to avoid truncation errors (see 
below), this is completely unmanageable on present computers. A classical trick is, 
however, not to store All, but only the result of its action on successive quadruplet 
fields. The storage is then reduced to O(N3)  and becomes manageable. As a price, a 
substantial number of equations of the form 

2 f = g  (40) 

have to be solved. Given the assumption of time-independent basic flow, in all the 
equations of the form (40), the right-hand side g is time-independent. Note that the 
linearized Navier-Stokes operator A” contains a, but the solution of interest will be 
time-independent. Still it is convenient to use a time-dependent scheme to integrate (40) 
and to let the solution relax to convergence. 

The numerical calculation is based on a standard (pseudo-) spectral method 
(Gottlieb & Orszag 1977), which easily allows the use of massively parallel machines, 
as explained in Gama et al. (1994). An Nl x Nz x N3 regular grid is used with dealiasing 
by truncation beyond the smallest of the wavenumbers N1/3, N,/3 and N,/3. 
Periodicity 2 7 4  (respectively, 27& 27ch,) is assumed in x1 (respectively, x,, x,). The 
timestepping is done by a slaved frog scheme (Frisch, She & Thual 1986) with mixing 
of odd and even solutions every 19 timesteps. 

The structure of our code is such that, in d dimensions it allows us to reduce the 
number of equations of the form A”f= g to be solved to d+d2, that is 12 in three 
dimensions. In contrast, 2d4 equations would be needed to get all d4 entries of the 
fourth-order eddy-viscosity tensor, calculating one entry after another. 

The number of timesteps needed to ensure convergence varies from a few tens to a 
few thousands, depending on the viscosity. On a CM-200, the CPU requirement (using 
8K processors) varies from a few minutes to several hours. The higher resolution (64,) 
was used essentially to check that truncation errors are negligible for v 2 1. Results 
from 32, and 64, calculations agree to at least five decimal places. 
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The code has been tested in various ways. First, we tested it on layered flow for which 
an analytic expression of the eddy viscosity tensor is known (DF). Since an already 
well-tested code exists for two-dimensional flow (Gama et al. 1994), we used it to test 
our three-dimensional code, successively assuming a flow which has no dependence on 
the xl-, on the x,- and on the x3-coordinate. Finally, we took advantage of the existence 
of the low-Reynolds-number expansion (38) to perform further tests. 

4. Applications 
4.1. Search forflows with complex eddy viscosity 

As seen in 92.2, to obtain a complex (non-real) eddy viscosity we must have A < 0, 
where d is the discriminant given by (30). It is shown in the Appendix that flow with 
cubic symmetry has A > 0. Do flows exist with the property d < O ?  

We started a search based on the perturbation expansion (38) of the eddy viscosity 
tensor. The only components appearing in d are: 

2 
'1331- '233'2 = -{('3 '1 '3) 

V 

+ 3 (u3 3-4 a3(a1 u1 -a, u , ) ) ~  + o ( V - z ) ,  

V1332 = - { ( u 3  a-4 a, a, u 3 )  + 3 (u, a-4 a, a3 u,)} + o ( V - ~ ) ,  

V2331 = - { (u3  a-4 a, a, u,) + 3 (u,  a-4  a, a, u,)} + 0 ( ~ - 2 ) .  

(41) 

(42) 

(43) 

We now want to find a flow such that A = ( v ~ ~ ~ ~  - v , ~ , , ) ~  + 4v13,, v~~~~ < 0. A necessary 
condition for this is that v,,,, and should have opposite signs. The first terms on 
the right-hand side in v~~~~ and v , , ~ ,  are the same and the second will be the same if the 
flow is invariant under interchange of x1 and x,. Furthermore, the difference between 
v~~~~ and v,,,, involves 6 = ((a, u2 -a, u,) d3 u3) .  Note that the quantity a, u, -a, u1 
is the x,-component of the vorticity. If the velocity and the vorticity only differ by a 
multiplicative constant (as is the case for the ABC flows), then 6 will be proportional 
to (u, a3 u,) which vanishes. Clearly, we want to avoid situations where v~~~~ and 
v~~~~ are equal, since this implies d 2 0. We found a flow for which v~~~~ and v,,,, are 
actually of different signs, namely u = (sin (x, + x, - x,), 0, sin (x, + x, - x3)). This flow 
does not have A < 0, because the ( ~ ~ ~ ~ ~ - u ~ ~ ~ ~ ) ~  term overwhelms the negative term 
v~~~~ v ~ ~ ~ ~ .  We now observe that by adding a suitable term proportional to sin x1 to the 
x,-component of the velocity, we can cancel the leading-order contribution to 
(v,,,, - v , , ~ , ) ~  without affecting u1332 v , ~ ~ , .  We are thus led to the following basic flow: 

2 
V 

2 
V 

u = (sin(x,+x,-x,),0,sin(xl+x,-x,)+(l/.\/3)sinx,), 
for which 

d = - & 2 +  O(v-3). 

This establishes the existence of a flow with complex eddy viscosities: 

(44) 
(45) 

Note that the flow (44) is two-and-a-half-dimensional in the sense that it depends 
only on two coordinates, namely x1 and x' = x,-x,. The fact that strictly two- 
dimensional flow cannot have a complex eddy viscosity does not carry over to two-and- 
a-half dimensional flow. Indeed, the latter is subject to a large-scale perturbation which 
depends not just on coordinates in the (x,, x')-plane. 
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1 .o 

0 1 2 3 4 5 6 

Real part of the eddy viscosity 

FIGURE 1. Real and imaginary parts of the eddy viscosity eigenvalue for the two-and-a-half- 
dimensional flow (44). The labels near the circles (computed values) show the molecular viscosities. 
__- , first two terms from the low-Reynolds-number expansion (46). 

We have thus shown that the two-and-a-half-dimensional flow has a complex eddy 
viscosity for arbitrarily small Reynolds numbers. However, the calculation being 
perturbative, the imaginary part in (46) is much smaller than the real part. Hence, 
dispersive effects are dominated by diffusion. To avoid this, we must drop the 
assumption of very low Reynolds numbers and make numerical calculations using the 
method of 8 3.1. 

Figure 1 shows the computed real and imaginary parts for the eddy viscosity of the 
two-and-a-half-dimensional flow, together with the perturbative expression (38), for a 
range of values of the molecular viscosity (as labelled). 

At high molecular viscosities (say, higher than 20), not shown on the figure, there is 
almost perfect agreement with the perturbative expression. As the viscosity is lowered, 
the low-Reynolds-number expression deteriorates, as expected. It is noteworthy that 
for the smallest viscosity used, v = 0.3, the imaginary part is already larger than the real 
part, so that strong dispersive effects are present. 

Another instance of a flow with complex eddy viscosity has been brought to our 
attention by A. A. Nepomnyashchy and Y. Hazan (private communication). 

4.2. Negative eddy viscosity instability for  the ABC-JEow 
The ABC-flows are the 3-parameter family of flows, 27t periodic in x,, x, and x,, defined 

(47) u1 = A sin x, + Ccos x,, 
by 

u, = B sin x, + A  cos x,, 
u, = Csinx,+Bcosx,. 
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They were introduced by Arnold (1965).t Because of their use in the study of chaotic 
advection and the dynamo effect, there is considerable literature on these flows (see e.g. 
Dombre et al. 1986; Galloway & Frisch 1987 and references therein). 

What concerns us here is the stability of ABC-flows, considered as solutions of the 
Navier-Stokes equation with a forcing of the ABC-type: when u is of the ABC-type the 
nonlinear term vanishes so that the force and the viscous term balance. 

Although we studied several instances of the ABC-flows, we shall report numerical 
results only for the ‘equilateral ’ case which has maximum symmetry : 

A = B = C = l .  (50) 
It is then customary to define the Reynolds number R as the inverse of the viscosity. 

Galloway & Frisch (1987) have found that the equilateral ABC-flow, when subject 
to weak perturbations having the same 2x-periodicity as the basic flow, becomes 
unstable at a critical Reynolds number just above 13. (This has been confirmed by 
Zheligovsky & Pouquet (1993), who have also studied the nature of the ensuing 
bifurcation.) 

We shall now show that when the perturbations are allowed to have a scale much 
larger than that of the basic flow, the critical Reynolds number for instability may drop 
by almost one order of magnitude. 

The ABC-flows are not parity-invariant. Actually, they possess a non-vanishing 
helicity u s  V A ud3x. Still, the fact that they possess the Beltrami property, (V A u and 
u are equal) ensures the absence of an AKA-effect. Technically, this means that the 
solvability condition for (16) is satisfied. Our eddy viscosity formalism is thus directly 
applicable to ABC-flows. 

For arbitrary periodic flow, the null-space of the linearized Navier-Stokes operator, 
i.e. the solution of (19, must be determined numerically. For ABC-flows the null-space 
may be obtained analytically. Indeed, it may be easily checked that in the four- 
dimensional notation of $2.1 (pressure followed by the three components of the 
velocity), the null-space is a three-dimensional vector-space spanned by : 

BCcos x1 cos x, - AB sin x1 sin x, 
- V  

N1 = ( -Bsinxl 
B cos x, 

ACcos x2 cos x, - BCsin x, sin x, 
c cos x, ..-( - V  

- C sin x, 

(53) 

ABcos x, cos x, - AC sin x, sin x, 
- A sin x, 

N 3 = (  A cos x, 
- V  

From now on we restrict ourselves to the equilateral ABC-flow. This flow has weak 
cubic symmetry. Its eddy viscosity tensor has the general form (37) which involves only 

t Equations (47) and (48) are already found in Beltrami (1889: see p. 304 of the complete works) 
but with the coefficients ABC (denoted T,, T,, T,) having ‘an arbitrary time-dependence’. Note that, 
in general, the time-dependence prevents such flows from being solutions of the steady-state Euler 
equation. 



Eddy viscosity of three-dimensional jlow 

-1 

259 

l f b  

two scalars a(.) and b(v). The two eddy viscosities (eigenvalues), corresponding to a 
given wave vector k = (kl ,  k,, k,) are given explicitly in the Appendix (equation (A 2)). 

In the Appendix it is also shown that, for any flow having the weak cubic symmetry, 
the eddy viscosities (eigenvalues) are real. Furthermore, it is shown that when a > 0 
and b > 0 the eddy viscosities are positive (stability). Finally, it is shown that for a > 0 
and when b crosses over to negative values, at least one of the eddy viscosities becomes 
negative (instability), for those wave vectors in the three planes generated by any pair 
of coordinate axes. 

The determination of a(v) and b(v) was done by the numerical technique presented 
in 93. Figure 2 shows the variation of the coefficients a(v) and b(v) for a range of values 
of the molecular viscosity. It is seen that a(v) > 0. Hence, the stability of the equilateral 
ABC-flow is governed solely by the sign of the coefficient b(v). The latter changes sign 
when v crosses the value v, N 0.52. 

Thus, for v < v, a negative-viscosity large-scale instability appears. The cor- 
responding Reynolds number is 

(54) 
1 

vc 
R, = - = 1.92. 

This value is nearly seven times smaller than the critical value obtained by Galloway 
& Frisch (1987) for instability to perturbations having the same 2x spatial periodicity 
as the basic flow. 

The nature of the modes which become unstable at R = R, can be inferred from our 
knowledge of the null-space of the linearized Navier-Stokes operator. Let us assume 
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for example, that the leading-order term W(O) has an exp(ik,X,) dependence on the 
slow coordinates (with k, =k 0). From (51k(53), specialized to A = B = C = 1, it 
follows that W(O) has the following representation 

W(O) = exp (ik, Xl) [ A, ( -sin 7 v  x1 ) +A,  ("'"') +A,(?;;)] .  (55) 

Taking the fast average of (21), we obtain V-( W'O)) = 0. This implies that A, = 0, 
while A, and A, are arbitrary. 

It is of interest to compare the negative-viscosity instability of the equilateral ABC- 
flow to the well-known instance of the Kolmogorov flow which has a negative-viscosity 
instability for v = v, = 1/2/2 (see e.g. Meshalkin & Sinai 1961 and DF). In the ABC 
flow, when A = 1 and B = C = 0, a circularly polarized one-dimensional flow is 
obtained. It is easily checked that its stability properties are just the same as for the 
Kolmogorov flow. We may define an effective Reynolds number 

cos x1 - sin xz 

Lv 
Reff = - , 

V 

where L is the inverse of the wavenumber in the basic flow (always one, here) and 0 is 
the r.m.s. velocity of the basic flow. For the Kolmogorov flow, we have Reff = l/(v2/2), 
while for the equilateral ABC-flow we have Reff = 2/3/v. In terms of this effective 
Reynolds number, the critical value is more than three times higher for the equilateral 
ABC-flow than for the Kolmogorov flow. 

For the Kolmogorov flow the nonlinear regime, just beyond the critical value, has 
been studied by Nepomnyashchy (1976), Sivashinsky (1985), She (1987) and others. In 
principle, a similar study is feasible for the equilateral ABC-flow. It is, however, 
expected to be much more involved, since the bifurcation is highly degenerated : for any 
wave-vector in a plane spanned by two coordinate axes, there is zero-crossing of an 
eigenvalue at the critical viscosity v,. 

Let us finally consider the thermodynamics of negative eddy viscosity. It is generally 
believed that molecular viscosities are constrained by thermodynamics to be positive 
and, so, negative eddy viscosities could be violating thermodynamics. The true 
situation is considerably more subtle. First, there is a basic difference between fluids 
considered microscopically, which are conservative dynamical systems and the same 
fluids, described macroscopically which are governed by dissipative equations. In the 
latter case, there is no such thing as a thermodynamic equilibrium. There may be non- 
trivial attractors for long times, but only if the system is driven in some way, for 
example, through external forces, pressure gradients or thermal convection. When 
negative eddy viscosity instabilities are present in the large-scale dynamics, the flow 
may exhibit new long-range orders, but no violation of microscopic thermodynamics 
is happening. 

Secondly, negative viscosity phenomena can actually occur in certain microscopic 
conservative systems. Rothman (1989) and HCnon (1992) have shown that some 
lattice gases in which the condition of semi-detailed-balance (a weak form of 
microreversibility) is released, can display negative viscosities. This requires a fine- 
tuning of the collision laws which is akin to introducing a Maxwell demon. The large- 
scale instabilities which are obtained in flows such as the Kolmogorov flow or the 
ABC-flows are of a very different nature: they are just a particular instance of 
hydrodynamic instability. 
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5. The issue of isotropy 
Can we find flows having an isotropic eddy viscosity, that is, such that the tensor 

vij lm is given by (37) with a = b? There is one trivial instance, namely when the flow 
vanishes and the eddy viscosity reduces to the molecular viscosity. We also know that 
in two dimensions, spatially periodic flow with suitable symmetry has an isotropic eddy 
viscosity (Vergassola, Gama & Frisch 1994; Gama et al. 1994). 

We have already stressed that in three dimensions isotropy is generically not 
consistent with periodicity. It may be that among the flows with cubic symmetry some 
have accidental isotropy (i.e. a = b in equation (A 2)) for certain values of the control 
parameters. 

A more generic way to ensure isotropy is to work with random, homogeneous and 
isotropic flows rather than with deterministic ones. Formally, the theory of the eddy 
viscosity can be extended to this case. There are however serious mathematical and 
numerical difficulties. For example, the eddy viscosity must be calculated by ensemble 
averaging over a large number of realizations (Monte Carlo method). This may require 
very large computer resources. 

A particularly appealing alternative is to work with quasi-periodic flow having 
icosahedral symmetry, as suggested by Yakhot, Bayly & Orszag (1986). A simple 
example is the flow generated by superposing 12 plane waves of equal amplitudes 
having the wave vectors 

Here T = i(1 + d5) is the golden mean. Such icosahedral symmetry guarantees 
isotropy of tensors up to fourth order. With quasi-periodic flow, a number of new 
challenges appear. Equations such as (1 5)-( 17) become linear partial differential 
equations with quasi-periodic coefficients. Much is known about the wave or 
Schrodinger equations in one dimension with quasi-periodic potential ; for example, 
the possibility of Bloch-type or localized solutions (see e.g. Chulaevsky 1989; 
Pastur & Figotin 1992). The linearized Navier-Stokes operator (known as the 
Orr-Sommerfeld operator when the basic flow depends on a single coordinate) is, 
however, not self-adjoint, contrary to the Schrodinger operator, so that existing theory 
cannot be easily adapted. 

For the numerical solution of the linearized Navier-Stokes with quasi-periodic 
coefficients, we have explored a new method based on multiplying the dimension of the 
space by the number of incommensurate wavenumbers in the basic flow (two for the 
case of (57)). The method seems to work well in two dimensions (where it requires the 
use of a four-dimensional spectral code). In three dimensions, the possibilities are 
severely restricted by the present limitation of even the fastest machines. 

Finally, there is the issue of having an eddy viscosity, which is simultaneously 
isotropic and negative. The equilateral ABC-flow has a negative eddy viscosity, but 
only for special directions of the wave vector. In two-dimensions, we know that 
negative isotropic eddy viscosity is a rather common phenomenon (Gama et al. 1994). 
This phenomenon may also occur in three dimensions, but is likely to be less common. 
One indication is that when the basic flow is random isotropic and time-dependent with 
a very short correlation-time, the contribution to the molecular viscosity vanishes in 
two dimensions but is always positive in three dimensions (Gama et al. 1994, 
Appendix D). 
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Furthermore, in three dimensions there is no known equivalent to the inverse 
cascade (Kraichnan 1967) so that we do not ‘need’ negative isotropic eddy viscosity. 
It may exist nevertheless. 

We have benefited from extensive discussions with M. Vergassola. This work was 
supported by the European Community (Human Capital and Mobility ER- 
BCHRXCT920001). Part of this work was done while U. F. and A. W. were visiting the 
Center for Fluid Dynamics Research (Princeton). The numerical calculations were 
done on the CM-200 of the ‘Centre RCgional de Calcul PACA, antenne INRIA- 
Sophia-Antipolis’ through the R3T2 network. 

Appendix. Eddy viscosity for cubic symmetry 
The highest symmetry in three dimensions compatible with periodicity is cubic 

symmetry, i.e. invariance under parity and permutations of the coordinates x,, x, 
and x,. 

Actually, we shall need only weak cubic symmetry, i.e. invariance under rotations of 
angle $I around any of the coordinate axes or translates thereof. The basic equations 
for the large-scale perturbation, given in 92.1, are (18) and (19), which involve the eddy 
viscosity tensor vijlm in the combination Vi V, ( W:)) .  Without loss of generality, we 
may thus assume that viilm is symmetrical in ( j , l ) .  Using the same technique as in 
Landau & Lifshitz (1970, p. 54), and slightly different notation, we can see that the 
fourth-order tensor vijlm with such symmetry in its indices and consistent with weak 
cubic symmetry depends only on three real numbers a, b and c. In the (xl, x,, x,)-frame 
we can write the components of the eddy viscosity tensor in the following form: 

vijlm = asijlm + b(6,, Si, - S,,,) + c(ai, a,, + Sij a,,), 
where airlm is equal to one if all four indices are equal and to zero otherwise; this is of 
course not a coordinate-independent representation of the eddy viscosity tensor, 
because aijlm is not a tensor. Since in (19) the eddy viscosity tensor is contracted with 
Vj V, and V, ( W g ) )  = 0, the last term, involving the coefficient c,  does not contribute. 
Hence, no generality is lost by assuming c = 0. Using now (A 1) in the definition (27) 
of the matrix Hi,(ko), we can express the latter in terms of the parameters a and b and 
the direction ko of the wave vector. The resulting three-by-three matrix has entries 
depending on five parameters: the viscosity, the coefficients a and b, and the direction 
of the wave vector k,. The determination of its non-vanishing eigenvalues may be done 
for example using symbolic calculations. The final result for the eddy viscosities reads : 

a+b b a-b v i  = -(kq ki + k; ki + ki ki) +F(k;  + ki + k:) &-dl”, k4 k4 
where 

and k4 = (k; + ki + k:)’. We show now that d is always positive. d being homogeneous 
and completely symmetrical in (k,, k,, k3), without loss of generality, we may assume 
k; = 1 2 ki = u 2 ki = 7 2 0. We thus obtain 

d = a2+72+(T7((7-1)rr-7-1). (A 4) 

We now observe that, from 0 < 7 < u < 1, it follows that (7- l)u-7- 1 2 
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(r - 1) - r - 1 = - 2. Thus, A 2 v2 + T~ - 2vr = (v- 7)2 2 0. The positivity of A implies 
that v; and v i  are both real. We have thus shown that weak cubic symmetry implies 
always real eddy viscosity. 

Next, we shall show that a > 0 and b > 0 implies vf > 0. We can rewrite (A 2) as 

where 0 = (k;k;+k;k;+k;k; ) ,  (A 6) 

and A = (k‘:+k;+k;). (A 7) 

We observe that 0 2 A ,  (A 8) 

equality being obtained only when all cross-products (involving all three factors k,, k ,  
and k,) vanish. In other words, equality holds only when the vector k is in a coordinate 
plane, i t .  is in any of the three planes generated by pairs of coordinate axes. From this, 
it follows that the first term in (A 5 )  is never negative, and that the second is strictly 
positive (by the fact that A > 0), so that v$ > 0. 

Finally, we show that for a > 0, when b crosses the value zero, at least one of the 
eddy viscosities becomes negative for those k in the coordinate planes and otherwise 
not. For k in a coordinate plane, we have 0 = A .  Hence, for a > 0 and b slightly 
negative, the smallest eddy viscosity is v; = b(20 + A ) / k 4  = b, which changes sign with 
b. Actually, if k is parallel to one of the coordinate axes, v g  = v; = b and the eddy 
viscosities both change sign with b. When k is not in a coordinate plane, the first term 
in (A 5 )  is strictly positive and no change of sign occurs when b goes through zero. 
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